Thu. Nov 25th, 2021
    0 0
    Spread the love
    Click to rate this post!
    [Total: 0 Average: 0]
    Read Time:18 Minute, 11 Second

    Human moral decision-making through the lens of Parkinson’s disease

    1.

    Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 1–21 (2017).

    Google Scholar 2.

    Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 3.

    Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012). https://doi.org/10.1101/cshperspect.a009621.4.

    Schultz, W. Multiple reward signals in the brain. Nat. Rev. Neurosci. 1, 199–207 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 5.

    Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    PubMed  Article  PubMed Central  Google Scholar 6.

    Jellinger, K. A. The pathology of Parkinson’s disease. Adv. Neurol. 86, 55–72 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 7.

    Kish, S. J., Shannak, K. & Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N. Engl. J. Med. 318, 876–880 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 8.

    Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  Google Scholar 9.

    Aarsland, D. et al. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 13, 217–231 (2017).

    PubMed  PubMed Central  Article  Google Scholar 10.

    Starkstein, S. E., Brockman, S. & Hayhow, B. D. Psychiatric syndromes in Parkinson’s disease. Curr. Opin. Psychiatry 25, 468–472 (2012).

    PubMed  Article  PubMed Central  Google Scholar 11.

    Doty, R. L. Olfaction in Parkinson’s disease and related disorders. Neurobiol. Dis. 46, 527–552 (2012).

    PubMed  Article  PubMed Central  Google Scholar 12.

    Chen, Z., Li, G. & Liu, J. Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 134, 104700 (2020).

    PubMed  Article  PubMed Central  Google Scholar 13.

    Alexander, G., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 14.

    Brown, P. & Marsden, C. What do the basal ganglia do? Lancet 351, 1801–1804 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 15.

    Middleton, F. A. & Strick, P. L. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Rev. 31, 236–250 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 16.

    Ikemoto, S., Yang, C. & Tan, A. Basal ganglia circuit loops, dopamine and motivation: a review and enquiry. Behav. Brain Res. 290, 17–31 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 17.

    Pierce, J. E. & Péron, J. The basal ganglia and the cerebellum in human emotion. Soc. Cogn. Affect. Neurosci. https://doi.org/10.1093/scan/nsaa076 (2020)18.

    Pauli, W. M., O’Reilly, R. C., Yarkoni, T. & Wager, T. D. Regional specialization within the human striatum for diverse psychological functions. Proc. Natl Acad. Sci. USA 113, 1907–1912 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 19.

    Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Prim. 1, 1–21 (2015).

    Google Scholar 20.

    Chong, T. T. J. et al. Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex 69, 40–46 (2015).

    PubMed  PubMed Central  Article  Google Scholar 21.

    Todes, C. J. & Lees, A. J. The pre-morbid personality of patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 48, 97–100 (1985).

    CAS  PubMed  PubMed Central  Article  Google Scholar 22.

    Poletti, M. & Bonuccelli, U. Personality traits in patients with Parkinson’s disease: assessment and clinical implications. J. Neurol. 259, 1029–1038 (2012).

    PubMed  Article  Google Scholar 23.

    Koerts, J., Tucha, L., Leenders, K. L. & Tucha, O. Neuropsychological and emotional correlates of personality traits in Parkinson’s disease. Behav. Neurol. 27, 567–574 (2013).

    PubMed  PubMed Central  Article  Google Scholar 24.

    Santangelo, G. et al. Personality and Parkinson’s disease: a meta-analysis. Park. Relat. Disord. 49, 67–74 (2018).

    Article  Google Scholar 25.

    Menza, M. The personality associated with Parkinson’s disease. Curr. Psychiatry Rep. 2, 421–426 (2000).

    CAS  PubMed  Article  Google Scholar 26.

    Bódi, N. et al. Reward-learning and the novelty-seeking personality: a between-and within-subjects study of the effects of dopamine agonists on young parkinsons patients. Brain 132, 2385–2395 (2009).

    PubMed  PubMed Central  Article  Google Scholar 27.

    Kaasinen, V. et al. Personality traits and brain dopaminergic function in Parkinson’s disease. Proc. Natl Acad. Sci. USA 98, 13272–13277 (2001).

    CAS  PubMed  Article  Google Scholar 28.

    Kaasinen, V., Aalto, S., Någren, K. & Rinne, J. O. Insular dopamine D2 receptors and novelty seeking personality in Parkinson’s disease. Mov. Disord. 19, 1348–1351 (2004).

    PubMed  Article  Google Scholar 29.

    Di Rosa, E., Schiff, S., Cagnolati, F. & Mapelli, D. Motivation–cognition interaction: how feedback processing changes in healthy ageing and in Parkinson’s disease. Aging Clin. Exp. Res. 27, 911–920 (2015).

    PubMed  Article  PubMed Central  Google Scholar 30.

    Brown, D. R., Richardson, S. P. & Cavanagh, J. F. An EEG marker of reward processing is diminished in Parkinson’s disease. Brain Res. 1727, 146541 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 31.

    Freedberg, M. et al. Separating the effect of reward from corrective feedback during learning in patients with Parkinson’s disease. Cogn. Affect. Behav. Neurosci. 17, 678–695 (2017).

    PubMed  Article  PubMed Central  Google Scholar 32.

    Skvortsova, V., Degos, B., Welter, M. L., Vidailhet, M. & Pessiglione, M. A selective role for dopamine in learning to maximize reward but not to minimize effort: evidence from patients with Parkinson’s disease. J. Neurosci. 37, 6087–6097 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 33.

    Ardouin, C. et al. Assessment of hyper- and hypodopaminergic behaviors in Parkinson’s disease. Rev. Neurol. 165, 845–856 (2009).

    CAS  PubMed  Article  Google Scholar 34.

    Weintraub, D. & Claassen, D. O. Impulse control and related disorders in Parkinson’s disease. Int. Rev. Neurobiol 133, 679–717 (2017).

    PubMed  Article  Google Scholar 35.

    Paz-Alonso, P. M. et al. Functional inhibitory control dynamics in impulse control disorders in Parkinson’s disease. Mov. Disord. 35, 316–325 (2020).

    PubMed  Article  Google Scholar 36.

    Steeves, T. D. L. et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132, 1376–1385 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 37.

    Corallo, F. et al. Nonmotor symptoms in Parkinson disease: a descriptive review on social cognition ability. J. Geriatr. Psychiatry Neurol. 30, 109–121 (2017).

    PubMed  Article  Google Scholar 38.

    Coundouris, S. P., Adams, A. G. & Henry, J. D. Empathy and theory of mind in Parkinson’s disease: a meta-analysis. Neurosci. Biobehav. Rev. 109, 92–102 (2020).

    PubMed  Article  Google Scholar 39.

    Gray, H. M. & Tickle-Degnen, L. A meta-analysis of performance on emotion recognition tasks in Parkinson’s disease. Neuropsychology 24, 176–191 (2010).

    PubMed  Article  Google Scholar 40.

    Yitzhak, N. et al. Recognition of emotion from subtle and non-stereotypical dynamic facial expressions in Huntington’s disease. Cortex 126, 343–354 (2020).

    PubMed  Article  PubMed Central  Google Scholar 41.

    Lieberman, M. D. Intuition: a social cognitive neuroscience approach logic of intuition as implicit learning. Psychol. Bull. 126, 109–137 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 42.

    Djamshidian, A., O’Sullivan, S. S., Lees, A. & Averbeck, B. B. Effects of dopamine on sensitivity to social bias in Parkinson’s disease. PLoS ONE 7, 3–8 (2012).

    Article  CAS  Google Scholar 43.

    Djamshidian, A., O’Sullivan, S. S., Doherty, K., Lees, A. J. & Averbeck, B. B. Altruistic punishment in patients with Parkinson’s disease with and without impulsive behaviour. Neuropsychologia 49, 103–107 (2011).

    PubMed  Article  PubMed Central  Google Scholar 44.

    Javor, A., Riedl, R., Kirchmayr, M., Reichenberger, M. & Ransmayr, G. Trust behavior in Parkinson’s disease: results of a trust game experiment. BMC Neurol. 15, 1–7 (2015).

    Article  Google Scholar 45.

    Javor, A., Ransmayr, G., Struhal, W. & Riedl, R. Parkinson patients’ initial trust in avatars: theory and evidence. PLoS ONE 11, 1–21 (2016).

    Article  CAS  Google Scholar 46.

    Florin, E. et al. Subthalamic stimulation modulates self-estimation of patients with Parkinson’s disease and induces risk-seeking behaviour. Brain 136, 3271–3281 (2013).

    PubMed  Article  PubMed Central  Google Scholar 47.

    Zhu, L., Jiang, Y., Scabini, D., Knight, R. T. & Hsu, M. Patients with basal ganglia damage show preserved learning in an economic game. Nat. Commun. 10, 1–10 (2019).

    Article  CAS  Google Scholar 48.

    O’Sullivan, S. S., Evans, A. H., Quinn, N. P., Lawrence, A. D. & Lees, A. J. Reckless generosity in Parkinson’s disease. Mov. Disord. 25, 221–223 (2010).

    PubMed  Article  PubMed Central  Google Scholar 49.

    Moll, J., Zahn, R., De Oliveira-Souza, R., Krueger, F. & Grafman, J. Opinion: the neural basis of human moral cognition. Nat. Rev. Neurosci. 6, 799–809 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 50.

    Fumagalli, M. et al. Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions. Soc. Neurosci. 6, 243–256 (2011).

    PubMed  Article  PubMed Central  Google Scholar 51.

    Fumagalli, M. et al. Ethical safety of deep brain stimulation: a study on moral decision-making in Parkinson’s disease. Park. Relat. Disord. 21, 709–716 (2015).

    Article  Google Scholar 52.

    Rosen, J. B., Brand, M., Polzer, C., Ebersbach, G. & Kalbe, E. Moral decision-making and theory of mind in patients with idiopathic parkinson’s disease. Neuropsychology 27, 562–572 (2013).

    PubMed  Article  PubMed Central  Google Scholar 53.

    Rosen, J. B., Rott, E., Ebersbach, G. & Kalbe, E. Altered moral decision-making in patients with idiopathic Parkinson’s disease. Park. Relat. Disord. 21, 1191–1199 (2015).

    Article  Google Scholar 54.

    Koenigs, M. et al. Damage to the prefrontal cortex increases utilitarian moral judgements. Nature 446, 908–911 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 55.

    Ciaramelli, E., Muccioli, M., Làdavas, E. & Di Pellegrino, G. Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Soc. Cogn. Affect. Neurosci. 2, 84–92 (2007).

    PubMed  PubMed Central  Article  Google Scholar 56.

    Kahane, G. Sidetracked by trolleys: why sacrificial moral dilemmas tell us little (or nothing) about utilitarian judgment. Soc. Neurosci. 10, 551–560 (2015).

    PubMed  PubMed Central  Article  Google Scholar 57.

    Rilling, J. K. & Sanfey, A. G. The neuroscience of social decision-making. Annu. Rev. Psychol. 62, 23–48 (2011).

    PubMed  Article  PubMed Central  Google Scholar 58.

    Abe, N. The neurobiology of deception: evidence from neuroimaging and loss-of-function studies. Curr. Opin. Neurobiol. 22, 594–600 (2009).

    Article  Google Scholar 59.

    Ganis, G. & Keenan, J. P. The cognitive neuroscience of deception. Soc. Neurosci. 4, 465–472 (2009).

    PubMed  Article  PubMed Central  Google Scholar 60.

    Whiten, A. & Byrne, R. W. Tactical deception in primates. Behav. Brain Sci. 11, 233–273 (1988).

    Article  Google Scholar 61.

    Byrne, R. W. & Corp, N. Neocortex size predicts deception rate in primates. Proc. R. Soc. B Biol. Sci. 271, 1693–1699 (2004).

    Article  Google Scholar 62.

    Briazu, R. A., Walsh, C. R., Deeprose, C. & Ganis, G. Undoing the past in order to lie in the present: counterfactual thinking and deceptive communication. Cognition 161, 66–73 (2017).

    PubMed  Article  PubMed Central  Google Scholar 63.

    Saltzman, J., Strauss, E., Hunter, M. & Archibald, S. Theory of mind and executive functions in normal human aging and Parkinson’s disease. J. Int. Neuropsychol. Soc. 6, 781–788 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 64.

    McNamara, P., Durso, R., Brown, A. & Lynch, A. Counterfactual cognitive deficit in persons with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 74, 1065–1070 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 65.

    Abe, N. et al. Do Parkinsonian patients have trouble telling lies the neurobiological basis of deceptive behaviour. Brain 132, 1386–1395 (2009).

    PubMed  PubMed Central  Article  Google Scholar 66.

    Mameli, F. et al. Lies tell the truth about cognitive dysfunction in essential tremor: an experimental deception study with the guilty knowledge task. J. Neurol. Neurosurg. Psychiatry 84, 1008–1013 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 67.

    Abe, N., Kawasaki, I., Hosokawa, H., Baba, T. & Takeda, A. Do patients with parkinson’s disease exhibit reduced cheating behavior? A neuropsychological study. Front. Neurol. 9, 1–6 (2018).

    Article  Google Scholar 68.

    Brusa, L. et al. Pathological Gambling in Parkinson’s disease patients: dopaminergic medication or personality traits fault? J. Neurol. Sci. 366, 167–170 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 69.

    Cilia, R., Siri, C., Colombo, A. & Pezzoli, G. Multiple compulsive behaviors in multiple system atrophy: the importance of predisposition to addiction. Park. Relat. Disord. 20, 355–357 (2014).

    Article  Google Scholar 70.

    Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E. & McDermott, K. B. The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses. Cereb. Cortex 19, 1557–1566 (2009).

    PubMed  Article  PubMed Central  Google Scholar 71.

    Lisofsky, N., Kazzer, P., Heekeren, H. R. & Prehn, K. Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies. Neuropsychologia 61, 113–122 (2014).

    PubMed  Article  PubMed Central  Google Scholar 72.

    Abe, N., Suzuki, M., Mori, E., Itoh, M. & Fujii, T. Deceiving others: distinct neural responses of the prefrontal cortex and amygdala in simple fabrication and deception with social interactions. J. Cogn. Neurosci. 19, 287–295 (2007).

    PubMed  Article  PubMed Central  Google Scholar 73.

    Kireev, M. V., Medvedeva, N. S., Korotkov, A. D. & Medvedev, S. V. Functional interactions between the caudate nuclei and inferior frontal gyrus providing deliberate deception. Hum. Physiol. 41, 22–26 (2015).

    Article  Google Scholar 74.

    Fullam, R. S., McKie, S. & Dolan, M. C. Psychopathic traits and deception: functional magnetic resonance imaging study. Br. J. Psychiatry 194, 229–235 (2009).

    PubMed  Article  PubMed Central  Google Scholar 75.

    Kireev, M., Korotkov, A., Medvedeva, N. & Medvedev, S. Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study. Int. J. Psychophysiol. 90, 291–299 (2013).

    PubMed  Article  PubMed Central  Google Scholar 76.

    Sip, K. E. et al. What if I get busted? Deception, choice, and decision-making in social interaction. Front. Neurosci. 6, 1–10 (2012).

    Article  Google Scholar 77.

    Lee, T. M. C. et al. Lie detection by functional magnetic resonance imaging. Hum. Brain Mapp. 15, 157–164 (2002).

    PubMed  PubMed Central  Article  Google Scholar 78.

    Speer, S. P. H., Smidts, A. & Boksem, M. A. S. Cognitive control increases honesty in cheaters but cheating in those who are honest. Proc. Natl Acad. Sci. USA 117, 19080–19091 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 79.

    Nuñez, J. M., Casey, B. J., Egner, T., Hare, T. & Hirsch, J. Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 25, 267–277 (2005).

    PubMed  Article  PubMed Central  Google Scholar 80.

    Cushman, F., Young, L. & Hauser, M. The role of conscious reasoning and intuition in moral judgment: testing three principles of harm. Psychol. Sci. 17, 1082–1089 (2006).

    PubMed  Article  PubMed Central  Google Scholar 81.

    Liuzza, M. T., Candidi, M., Sforza, A. L. & Aglioti, S. M. Harm avoiders suppress motor resonance to observed immoral actions. Soc. Cogn. Affect. Neurosci. 10, 1–6 (2014).

    Google Scholar 82.

    Crockett, M. J., Clark, L., Hauser, M. D. & Robbins, T. W. Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc. Natl Acad. Sci. USA 107, 17433–17438 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 83.

    Crockett, M. J. et al. Dissociable effects of serotonin and dopamine on the valuation of harm in moral decision making. Curr. Biol. 25, 1852–1859 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 84.

    Abe, N. & Greene, J. D. Response to anticipated reward in the nucleus accumbens predicts behavior in an independent test of honesty. J. Neurosci. 34, 10564–10572 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 85.

    Hu, X., Pornpattananangkul, N. & Nusslock, R. Executive control- and reward-related neural processes associated with the opportunity to engage in voluntary dishonest moral decision making. Cogn. Affect. Behav. Neurosci. 15, 475–491 (2015).

    PubMed  PubMed Central  Article  Google Scholar 86.

    Seuntjens, T. G., Zeelenberg, M., van de Ven, N. & Breugelmans, S. M. Greedy bastards: testing the relationship between wanting more and unethical behavior. Pers. Individ. Differ. 138, 147–156 (2019).

    Article  Google Scholar 87.

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 88.

    O’Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 89.

    Burton, A. C., Nakamura, K. & Roesch, M. R. From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol. Learn. Mem. 117, 51–59 (2015).

    PubMed  Article  PubMed Central  Google Scholar 90.

    Martini, A. et al. Dopaminergic neurotransmission in patients with Parkinson’s disease and impulse control disorders: a systematic review and meta-analysis of PET and SPECT studies. Front. Neurol. 9, 1018 (2018). https://doi.org/10.3389/fneur.2018.01018.91.

    Wu, K. et al. Single versus multiple impulse control disorders in Parkinson’s disease: an 11C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release. J. Neurol. 262, 1504–1514 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 92.

    O’Sullivan, S. S. et al. Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain 134, 969–978 (2011).

    PubMed  Article  PubMed Central  Google Scholar 93.

    Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 94.

    Fumagalli, M. & Priori, A. Functional and clinical neuroanatomy of morality. Brain 135, 2006–2021 (2012).

    PubMed  Article  PubMed Central  Google Scholar 95.

    Roberts, S., Henry, J. D. & Molenberghs, P. Immoral behaviour following brain damage: a review. J. Neuropsychol. 13, 564–588 (2019).

    PubMed  Article  PubMed Central  Google Scholar 96.

    Grafman, J., Cristofori, I., Zhong, W. & Bulbulia, J. The neural basis of religious cognition. Curr. Dir. Psychol. Sci. 29, 126–133 (2020).

    Article  Google Scholar 97.

    Darby, R. R. Neuroimaging abnormalities in neurological patients with criminal behavior. Curr. Neurol. Neurosci. Rep. 18, 47 (2018). https://doi.org/10.1007/s11910-018-0853-3.98.

    Santens, P., Vanschoenbeek, G., Miatton, M. & De Letter, M. The moral brain and moral behaviour in patients with Parkinson’s disease: a review of the literature. Acta Neurol. 118, 387–393 (2018).

    Article  Google Scholar 99.

    Panasiti, M. S., Pavone, E. F., Merla, A. & Aglioti, S. M. Situational and dispositional determinants of intentional deceiving. PLoS ONE 6, e19465 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 100.

    Panasiti, M. S. et al. The motor cost of telling lies: electrocortical signatures and personality foundations of spontaneous deception. Soc. Neurosci. https://doi.org/10.1080/17470919.2014.934394 (2014).101.

    Panasiti, M. S., Cardone, D., Pavone, E. F., Mancini, A. & Aglioti, S. M. Thermal signatures of voluntary deception in ecological conditions. Sci. Rep. 6, 35174 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 102.

    Azevedo, R. T., Panasiti, M. S., Maglio, R. & Aglioti, S. M. Perceived warmth and competence of others shapes voluntary deceptive behavior in a morally relevant setting. Br. J. Psychol. 109, 25–44 (2017).

    PubMed  Article  Google Scholar 

    About Post Author

    coolpraveenbds

    hi this is Dr Praveen from apple dental clinic varanasi and here teeth problems are solved with an affordable price.
    Facebook Comments Box

    By coolpraveenbds

    hi this is Dr Praveen from apple dental clinic varanasi and here teeth problems are solved with an affordable price.

    Average Rating

    5 Star
    0%
    4 Star
    0%
    3 Star
    0%
    2 Star
    0%
    1 Star
    0%

    2 thoughts on “What are the important aspect of human behavior involved in decision making?

    Leave a Reply

    Your email address will not be published. Required fields are marked *